Functional rescue in a mouse model of congenital muscular dystrophy with megaconial myopathy

Authors
AA Sayed, RB Sher, SJ Sukoff Rizzo, LC Anderson et al


Lab
The Jackson Laboratory, 600 Maine Street, Bar Harbor, ME 04609, USA.

Journal
Human Molecular Genetics

Abstract
Congenital muscular dystrophy with megaconial myopathy (MDCMC) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. The observation of megamitochondria in skeletal muscle biopsies is exclusive to this type of MD. The disease is caused by loss of function mutations in the choline kinase beta (CHKB) gene which results in dysfunction of the Kennedy pathway for the synthesis of phosphatidylcholine. We have previously reported a rostrocaudal MD (rmd) mouse with a deletion in the Chkb gene resulting in an MDCMC-like phenotype, and we used this mouse to test gene therapy strategies for the rescue and alleviation of the dystrophic phenotype. Introduction of a muscle-specific Chkb transgene completely rescues motor and behavioral function in the rmd mouse model, confirming the cell-autonomous nature of the disease. Intramuscular gene therapy post-disease onset using an adeno-associated viral 6 (AAV6) vector carrying a functional copy of Chkb is also capable of rescuing the dystrophy phenotype. In addition, we examined the ability of choline kinase alpha (Chka), a gene paralog of Chkb, to improve dystrophic phenotypes when upregulated in skeletal muscles of rmd mutant mice using a similar AAV6 vector. The sum of our results in a preclinical model of disease suggest that replacement of the Chkb gene or upregulation of endogenous Chka could serve as potential lines of therapy for MDCMC patients.

BIOSEB Instruments Used:
Grip strength test (BIO-GS3)

Produits associés

DEMANDE DE PUBLICATION

Merci de votre intérêt pour notre gamme de produits et de votre demande pour cette publication qui vous sera envoyée si l'équipe de recherche et la revue le permettent. Notre équipe commerciale vous contactera dans les plus brefs délais.