Low intensity exercise attenuates disease progression and stimulates cell proliferation in the spinal cord of a mouse model with progressive motor neuronopathy-

Authors
M. Ferrer-Alcon, C. Winkler-Hirt, R. Madani, F.E. Perrin, A.C. Kato.


Lab
University of Geneva, Faculty of Medicine, Department of Basic Neuroscience, Geneva, Switzerland.

Journal
Neuroscience

Abstract
Physical exercise has been shown to stimulate neurogenesis, increase resistance to brain trauma and disease, improve learning and increase levels of growth factors. We show that low intensity exercise has profound effects on the phenotype of a mouse mutant with progressive motor neuronopathy. These animals normally die at 47 days of age due to motoneuron loss and muscle atrophy. When mice undergo low intensity exercise, their lifespan increased by 74%, they exhibited a decreased loss of motoneurons, improved muscle integrity and a twofold increase in proliferating cells in the spinal cord. The molecular mechanism of neuroprotection may be related to insulin-like-growth factor 1 (IGF-1) since injections of antibodies to IGF-1 abrogated the effects of exercise on the increased life-span. Thus IGF-1 may act as a possible “exercise-induced” neuroprotective factor.

BIOSEB Instruments Used:
Grip strength test (BIO-GS3)

Produits associés

DEMANDE DE PUBLICATION

Merci de votre intérêt pour notre gamme de produits et de votre demande pour cette publication qui vous sera envoyée si l'équipe de recherche et la revue le permettent. Notre équipe commerciale vous contactera dans les plus brefs délais.