Authors
Park, Kyungeun, Jung, Sunyoon, Li, Chunmei, Ha, Jung-Heun, Jeong, Yoonhwa
Lab
Journal
Nutrients
Abstract
Background/Objectives: Obesity-related metabolic complications contribute to musculoskeletal disorders and are often associated with muscular fat accumulation. The AMP-activated protein kinase (AMPK) is a therapeutic target that can mitigate these effects. Methods: An in vivo study was conducted to understand the effects of Gryllus bimaculatus (GB), a potent AMPK activator, on metabolic and muscular homeostasis in diet-induced obesity (DIO). Six-week-old male C57BL/6J mice were fed either a normal diet or a high-fat diet (HFD) for eight weeks to induce DIO. Subsequently, HFD-fed mice were divided into four groups: HFD only, HFD with 100 mg/kg/day GB, HFD with 200 mg/kg/day GB, and HFD with 400 mg/kg/day GB for 16 weeks. To assess the effects of GB, we evaluated insulin resistance, muscle strength, muscular fat accumulation, and AMPK activation using an oral glucose tolerance test, BIO-GS3, histological assessments, serum lipid analyses, western blotting, and quantitative reverse transcription–polymerase chain reaction. Results: The low- and mid-dose GB groups showed a trend toward improved insulin resistance. GB significantly reduced muscle fat accumulation and increased muscle strength. The mid- and high-dose GB groups showed a significantly upregulated expression of the molecular markers of mitochondrial biogenesis and fatty acid oxidation in muscle tissues. Additionally, the high-dose GB group activated AMPK and inhibited the activity of acetyl-CoA carboxylase in the skeletal muscle. Conclusions: The results suggest that GB may serve as a nutraceutical candidate for the management of obesity-associated metabolic complications.
Keywords/Topics
AMPK; Gryllus bimaculatus; insulin resistance; skeletal muscle; obesity; ectopic
BIOSEB Instruments Used:
Grip strength test (BIO-GS4)
Source :
Congrès & Meetings 