Mitochondrial dysfunction manifests as different neurological diseases, but the mechanisms underlying the clinical variability remain poorly...
Array
(
[id_prestablog_news] => 938
[id_shop] => 1
[date] => 2018-01-04 00:00:00
[date_modification] => 2024-02-09 14:15:12
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[ishero] => 0
[prim_key] => 1840
[id_lang] => 2
[title] => Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy
[paragraph] => Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy
[content] => Authors
O Ignatenko, D Chilov, I Paetau, E Miguel, CB Jackson, G Capin, A Paetau, M Terzioglu, L Euro, A Suomalainen
Lab
University of Helsinki, Finland
Journal
Nature COmmunications
Abstract
Mitochondrial dysfunction manifests as different neurological diseases, but the mechanisms underlying the clinical variability remain poorly understood. To clarify whether different brain cells have differential sensitivity to mitochondrial dysfunction, we induced mitochondrial DNA (mtDNA) depletion in either neurons or astrocytes of mice, by inactivating Twinkle (TwKO), the replicative mtDNA helicase. Here we show that astrocytes, the most abundant cerebral cell type, are chronically activated upon mtDNA loss, leading to early-onset spongiotic degeneration of brain parenchyma, microgliosis and secondary neurodegeneration. Neuronal mtDNA loss does not, however, cause symptoms until 8 months of age. Findings in astrocyte-TwKO mimic neuropathology of Alpers syndrome, infantile-onset mitochondrial spongiotic encephalopathy caused by mtDNA maintenance defects. Our evidence indicates that (1) astrocytes are dependent on mtDNA integrity; (2) mitochondrial metabolism contributes to their activation; (3) chronic astrocyte activation has devastating consequences, underlying spongiotic encephalopathy; and that (4) astrocytes are a potential target for interventions.
BIOSEB Instruments Used
Grip strength test (BIO-GS3)
Keywords/Topics
Stress oxydant; Métabolisme
[meta_description] =>
[meta_keywords] => https://www.nature.com/articles/s41467-017-01859-9
[meta_title] =>
[link_rewrite] => loss-of-mtdna-activates-astrocytes-and-leads-to-spongiotic-encephalopathy
[actif_langue] => 1
[read] => 952
[count_comments] => 0
[id] => 938
[categories] => Array
(
[23] => Array
(
[id_prestablog_categorie] => 23
[title] => Métabolisme
[link_rewrite] => Metabolisme
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
[86] => Array
(
[id_prestablog_categorie] => 86
[title] => Stress oxydant
[link_rewrite] => Stress-oxydant
)
)
[authors] =>
[paragraph_crop] => Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy
[link_for_unique] => 1
[products_liaison] => Array
(
[48] => Array
(
[name] => Test d'agrippement
[description_short] =>
Une méthode simple pour quantifier objectivement la force musculaire des rats et souris et l'effet de drogues, toxines, maladies musculaires (ex: myopathie) et neurodégénératives. Cette mesure de force est souvent employée en association avec le test de coordination motrice ROTAROD: un sujet présentant une coordination normale montrera des résultats médiocres en cas de faible force musculaire. Un must pour vos recherches sur l'activité, la coordination et le contrôle musculaire: particulièrement utile pour vos études sur les maladies de Parkinson et Huntington.
Nouveautés GS4 - 2023: Écran couleur rétroéclairé (meilleure lisibilité), pédale de remise à zéro, durée de batterie optimisée, taille de mémoire augmentée à 500 valeurs, compteur d'animaux, port USB (transfert de données/charge)


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/fr/activite-systeme-moteur-coordination/48-grip-strength-test.html
)
)
)
1 En lire plus