Authors
I Rippin, K Bonder, SB Joseph et al
Lab
The Department of Human Molecular Genetics & Biochemistry Sackler School of Medicine, Tel Aviv University, Israel
Journal
Neurobiology of Disease
Abstract
In Huntington's disease (HD), the mutant huntingtin (mHtt) accumulates as toxic aggregates in the striatum tissue, with deleterious effects on motor-coordination and cognitive functions. Reducing the levels of mHtt is therefore a promising therapeutic strategy. We have previously reported that GSK-3 is a negative regulator of the autophagy/lysosome pathway, which is responsible for intracellular degradation, and is critically important for maintaining neuronal vitality. Thus, we hypothesized that inhibition of GSK-3 may trigger mHtt clearance thereby reducing mHtt cytotoxicity and improving HD symptoms. Here, we demonstrate that depletion or suppression of autophagy results in a massive accumulation of mHtt aggregates. Accordingly, mHtt aggregates were localized in lysosomes, but, mostly mislocalized from lysosomes in the absence of functional autophagy. Overexpression of GSK-3, particularly the _ isozyme, increased the number of mHtt aggregates, while silencing GSK-3_/_, or treatment with a selective GSK-3 inhibitor, L807mts, previously described by us, reduced the amounts of mHtt aggregates. This effect was mediated by increased autophagic and lysosomal activity. Treating R6/2 mouse model of HD with L807mts, reduced striatal mHtt aggregates and elevated autophagic and lysosomal markers. The L807mts treatment also reduced hyperglycemia and improved motor-coordination functions in these mice. In addition, L807mts restored the expression levels of Sirt1, a critical neuroprotective factor in the HD striatum, along with its targets BDNF, DRPP-32, and active Akt, all provide neurotrophic/pro-survival support and typically decline in the HD brain. Our results provide strong evidence for a role for GSK-3 in the regulation of mHtt dynamics, and demonstrate the benefits of GSK-3 inhibition in reducing mHtt toxicity, providing neuroprotective support, and improving HD symptoms.
BIOSEB Instruments Used:
Grip strength test (BIO-GS3)