Mice with a deletion of the major central myelin protein exhibit hypersensitivity to noxious thermal stimuli- involvement of central sensitization

Authors
B. Petita, F. Giraudetb, C. Béchona, L. Bardinf, P. Avan et al.


Lab
Université d'Auvergne, Clermont-Ferrand, France

Journal
Neurobiology of Disease

Abstract
mutations in the gene encoding the major myelin protein of the central nervous system, proteolipid protein 1 (PLP1), cause an X-linked form of spastic paraplegia (SPG2) associated with axonal degeneration. While motor symptoms are the best known manifestations of this condition, its somatosensory disturbances have been described but poorly characterized. We carried out a longitudinal study in an animal model of SPG2 — mice carrying a deletion of the Plp1 gene (Plp- mice). Plp- mice exhibited severe early-onset thermal hyperalgesia, in the absence of thermal allodynia. We first performed an electrophysiological testing which showed an early decrease in peripheral and spinal conduction velocities in Plp mice. Such as the abnormal sensitive behaviors, this slowing of nerve conduction was observed before the development of myelin abnormalities at the spinal level, from 3 months of age, and without major morphological defects in the sciatic nerve. To understand the link between a decrease in nerve velocity and an increased response to thermal stimuli before the appearance of myelin abnormalities, we focused our attention on the dorsal horn of the spinal cord, the site of integration of somatosensory information. Immunohistochemical studies revealed an early-onset activation of astrocytes and microglia that worsened with age, associated later in age with perturbation of the expression of the sensory neuropeptides calcitonin-gene-related peptide and galanin. Taken together, these results represent complementary data supporting the hypothesis that Plp- mice suffer from ganglionopathy associated with late onset central demyelination but with few peripheral nerve alterations, induced by the glial-cell-mediated sensitization of the spinal cord. The mechanism suggested here could underlie pain experiments in other leukodystrophies as well as in other non-genetic demyelinating diseases such as multiple sclerosis.

BIOSEB Instruments Used:
Cold Hot Plate Test (BIO-CHP),Thermal Place Preference, 2 Temperatures Choice Nociception Test (BIO-T2CT)

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.