Intravenous administration of human mesenchymal stem cells derived from adipose tissue and umbilical cord improves neuropathic pain via suppression of neuronal damage and anti-inflammatory actions in rats

Authors
K Miyano, M Ikehata, K Ohshima et al


Lab
The Jikei University School of Medicine, Nishishimbashi, Minato-ku, Tokyo, Japan

Journal
PLOS One

Abstract
Mesenchymal stem cells (MSCs), which are isolated from adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), or bone marrow, have therapeutic potential including anti-inflammatory and immunomodulatory activities. It was recently reported that MSCs are also effective as a therapeutic treatment for neuropathic pain, although the underlying mechanisms have yet to be resolved. Therefore, in this study, we investigated the effects of human AD- and UC-MSCs on neuropathic pain and its mechanisms using rat models of partial sciatic nerve ligation (PSNL). AD- or UC-MSCs were intravenously administered 4 days after PSNL. Antinociceptive effects were then evaluated using the von Frey and weight-bearing tests. We found that, 3Ð9 days after the administration of AD- or UC-MSCs to PSNL-exposed rats, both the mechanical threshold and differences in weight-bearing of the right and left hind paws were significantly improved. To reveal the potential underlying antinociceptive mechanisms of MSCs, the levels of activation transcription factor 3- and ionized calcium-binding adapter molecule 1-positive cells were measured by immunohistochemical analysis. AD- and UC-MSCs significantly decreased the levels of these proteins that were induced by PSNL in the dorsal root ganglia. Additionally, UC-MSC significantly improved the PSNL-induced decrease in the myelin basic protein level in the sciatic nerve, indicating that UC-MSC reversed demyelination of the sciatic nerve produced by PSNL. These data suggest that AD- and UC-MSCs may help in the recovery of neuropathic pain via the different regulation; AD-MSCs exhibited their effects via suppressed neuronal damage and anti-inflammatory actions, while UC-MSCs exhibited their effects via suppressed neuronal damage, anti-inflammatory actions and remyelination.

BIOSEB Instruments Used:
Dynamic Weight Bearing 2.0 (BIO-DWB-DUAL)

Publication request

Thank you for your interest in our product range and your request for this publication, which will be sent to you if the research team and the journal allow it. Our commercial team will contact you as soon as possible.