Aim This study investigates the effects of minocycline (an inhibitor of microglial activation) administration on the expression level of spinal...
Array
(
[id_prestablog_news] => 1134
[id_shop] => 1
[date] => 2019-05-18 00:00:00
[date_modification] => 2024-02-09 14:15:12
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 2229
[id_lang] => 1
[title] => Minocycline attenuates the development of diabetic neuropathy by modulating DREA
[paragraph] => Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord
[content] => Authors
CAN Ismail, R Suppian, CBA Aziz, I Long
Lab
School of Health Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Malaysia
Journal
Journal of Diabetes & Metabolic Disorders
Abstract
AimThis study investigates the effects of minocycline (an inhibitor of microglial activation) administration on the expression level of spinal BDNF and DREAM proteins in diabetic neuropathic pain (DNP) rats. Methods The rats were divided into four groups (n =_16): non-diabetic control, diabetic control and diabetic rats receiving minocycline (80 microg/day or 160 _g/day). The diabetic rat model was induced by intraperitoneal injection of streptozotocin (60 mg/kg STZ). Tactile allodynia was assessed on day-0 (baseline), day-14 (pre-intervention) and day-22 (post-intervention). Minocycline at doses of 80 _g and 160 _g were given intrathecally from day-15 until day-21. On day-23, formalin test was conducted to assess nociceptive behaviour response. The spinal expression of OX-42 and level of BDNF and DREAM proteins were detected by immunohistochemistry and western blot analyses. Results Diabetes rats showed significant tactile allodynia and nociceptive behaviour. These were accompanied by augmented expression of spinal OX-42, BDNF and DREAM protein levels. Both doses of minocycline attenuated tactile allodynia and nociceptive behaviour and also suppressed the diabetic-induced increase in spinal expressions of OX-42, BDNF and DREAM proteins. Conclusion This study revealed that minocycline could attenuate DNP by modulating spinal BDNF and DREAM protein expressions.
BIOSEB Instruments Used
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)
[meta_description] =>
[meta_keywords] => https://link.springer.com/article/10.1007/s40200-019-00411-4
[meta_title] =>
[link_rewrite] => minocycline-attenuates-the-development-of-diabetic-neuropathy-by-modulating-dream-and-bdnf-protein-expression-in-rat-spinal-cord
[actif_langue] => 1
[read] => 1161
[count_comments] => 0
[id] => 1134
[categories] => Array
(
[29] => Array
(
[id_prestablog_categorie] => 29
[title] => Neuropathic pain
[link_rewrite] => Neuropathic-pain
)
[10] => Array
(
[id_prestablog_categorie] => 10
[title] => Pain
[link_rewrite] => Pain
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
)
[authors] =>
[paragraph_crop] => Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF [...]
[link_for_unique] => 1
[products_liaison] => Array
(
[1859] => Array
(
[name] => Electronic Von Frey - Wireless
[description_short] => A quick solution to determine the mechanical sensitivity threshold in rodents (mice and rats). Now wireless, to be free from annoying cables!
This precise and easy-to-use electronic instrument is a must-have reference for your research in analgesia, nociception, neuro-pathologies and post-operative pain.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1859-electronic-von-frey-4.html
)
[1860] => Array
(
[name] => Electronic Von Frey 5 with embedded camera
[description_short] => As an electronic version of the classical Von Frey Filaments esthesiometer (or aesthesiometer), the latest evolution of Bioseb's Electronic Von Frey instrument for determining the mechanical sensitivity threshold in rodents (rats and mice) is a must-have instrument for your reseach on hyperalgesia and allodynia. By measuring and recording the force at which the animal exhibits a paw withdrawal reflex, pathologies related to sensory response and hyper- or hypo-aesthesia can be studied.
The EVF5 includes an embedded camera inside the stimulator handle and a new, dedicated software revolutionizing the experimental process.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1860-electronic-von-frey-5-with-embedded-camera.html
)
)
)
1 Read more