Introduction: Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic...
Array
(
[id_prestablog_news] => 1944
[id_shop] => 1
[date] => 2024-01-15 00:00:00
[date_modification] => 2024-05-10 10:07:53
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 3576
[id_lang] => 1
[title] => Dietary intake of micronized avian eggshell membrane in aged mice reduces circul
[paragraph] => Dietary intake of micronized avian eggshell membrane in aged mice reduces circulating inflammatory markers- increases microbiota diversity- and attenuates skeletal muscle aging
[content] => Authors
Rønning SB, Carlsen H, Rocha SDC, Rud I, Solberg N, Høst V, Veiseth-Kent E, Arnesen H, Bergum S, Kirkhus B, Böcker U, Abedali N, Rundblad A, Bålsrud P, Måge I, Holven KB, Ulven SM, Pedersen ME.
Lab
Oslo University Hospital, Oslo, Norway.
Journal
Front Nutr.
Abstract
Introduction: Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods: Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion: Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.
BIOSEB Instruments Used
Grip strength test (BIO-GS4)
[meta_description] =>
[meta_keywords] => https://www.frontiersin.org/articles/10.3389/fnut.2023.1336477/full
[meta_title] =>
[link_rewrite] => dietary-intake-of-micronized-avian-eggshell-membrane-in-aged-mice-reduces-circulating-inflammatory-markers--increases-microbiota-diversity--and-attenuates-skeletal-muscle-aging
[actif_langue] => 1
[read] => 415
[count_comments] => 0
[id] => 1944
[categories] => Array
(
[63] => Array
(
[id_prestablog_categorie] => 63
[title] => General muscular system
[link_rewrite] => General-muscular-system
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
)
[authors] =>
[paragraph_crop] => Dietary intake of micronized avian eggshell membrane in aged mice reduces circulating [...]
[link_for_unique] => 1
[products_liaison] => Array
(
[48] => Array
(
[name] => Grip strength test
[description_short] => An easy way to objectively quantify the muscular strength of mice and rats, and to assess the effect of drugs, toxins, muscular (i.e. myopathy) and neurodegenerative diseases on muscular degeneration. It is widely used in conjunction with the ROTAROD motor coordination test: a normally coordinated rodent will show a decreased latency to fall off the rotating rod if its muscular strength is low. The Grip Strength Test is a must for your research on activity, motor control & coordination, and is particularly well suited for studies on Parkinson's & Huntington's disease.
New features GS4 - 2023: Color display with permanent backlight screen for easier reading, reset by footswitch, Improved battery time, Larger data memory of 500 values, Animal counter, USB port (charging/data transfer)


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/en/activity-motor-control-coordination/48-grip-strength-test.html
)
)
)
1 Read more