Infection - page 2 Scientific Publications

Latest publication 10/31/2017

CXCR4 signaling contributes to alveolar bone resorption in Porphyromonas gingiva

Periodontitis caused by bacterial infection gradually progresses accompanied by periodontal tissue destruction. As a result, teeth lose their...

Array
(
    [id_prestablog_news] => 931
    [id_shop] => 1
    [date] => 2017-10-31 00:00:00
    [date_modification] => 2024-02-09 14:15:12
    [langues] => ["1","2"]
    [actif] => 1
    [slide] => 0
    [url_redirect] => 
    [average_rating] => 
    [number_rating] => 
    [author_id] => 1
    [featured] => 0
    [prim_key] => 1825
    [id_lang] => 1
    [title] => CXCR4 signaling contributes to alveolar bone resorption in Porphyromonas gingiva
    [paragraph] => CXCR4 signaling contributes to alveolar bone resorption in Porphyromonas gingivalis-induced periodontitis in mice 
    [content] => 

Authors
H. Nagashima, M. Shinoda, K. Honda, N. Kamio, A. Hasuike, N. Sugano, Y. Arai, S. Sato, K. Iwata


Lab
Nihon University School of Dentistry, Tokyo, Japan

Journal
Journal of Oral Science

Abstract
Periodontitis caused by bacterial infection gradually progresses accompanied by periodontal tissue destruction. As a result, teeth lose their supporting structures, and this leads to tooth exfoliation. CXC-chemokine receptor 4 (CXCR4) is known to be expressed in lymphocytes, fibroblasts and osteoclasts in periodontal tissues, suggesting that periodontal CXCR4 signaling contributes to alveolar bone resorption in the milieu of periodontitis. However, the role of CXCR4 signaling in the pathogenesis of periodontitis has remained unknown. We established a mouse model of periodontitis by inoculation of Porphyromonas gingivalis (P.g.) into a silk ligature placed around the maxillary molar. Although there was no significant difference in the mechanical sensitivity in the periodontal tissue between P.g. treatment and sham treatment during the experimental period, mechanical allodynia in the periodontal tissue was induced after gingival injection of complete Freund’s adjuvant compared with that resulting from sham and P.g. treatment alone. Moreover, CXCR4 neutralization in the periodontal tissue following P.g. treatment enhanced periodontal inflammatory cell infiltration and depressed alveolar bone resorption. These findings suggest that periodontal CXCR4 signaling in several cell types in P.g.-induced periodontal inflammation depresses alveolar bone resorption in periodontitis. CXCR4 signaling might be a target for therapeutic intervention to prevent alveolar bone resorption in periodontitis.

BIOSEB Instruments Used
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)

[meta_description] => [meta_keywords] => https://www.jstage.jst.go.jp/article/josnusd/advpub/0/advpub_16-0830/_pdf [meta_title] => [link_rewrite] => cxcr4-signaling-contributes-to-alveolar-bone-resorption-in-porphyromonas-gingivalis-induced-periodontitis-in-mice- [actif_langue] => 1 [read] => 1287 [count_comments] => 0 [id] => 931 [categories] => Array ( [99] => Array ( [id_prestablog_categorie] => 99 [title] => Infection [link_rewrite] => Infection ) [29] => Array ( [id_prestablog_categorie] => 29 [title] => Neuropathic pain [link_rewrite] => Neuropathic-pain ) [10] => Array ( [id_prestablog_categorie] => 10 [title] => Pain [link_rewrite] => Pain ) [2] => Array ( [id_prestablog_categorie] => 2 [title] => Publications [link_rewrite] => publications ) ) [authors] => [paragraph_crop] => CXCR4 signaling contributes to alveolar bone resorption in Porphyromonas gingivalis-induced [...] [link_for_unique] => 1 [products_liaison] => Array ( [1859] => Array ( [name] => Electronic Von Frey - Wireless [description_short] =>

A quick solution to determine the mechanical sensitivity threshold in rodents (mice and rats). Now wireless, to be free from annoying cables!

This precise and easy-to-use electronic instrument is a must-have reference for your research in analgesia, nociception, neuro-pathologies and post-operative pain.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1859-electronic-von-frey-4.html ) [1860] => Array ( [name] => Electronic Von Frey 5 with embedded camera [description_short] =>

As an electronic version of the classical Von Frey Filaments esthesiometer (or aesthesiometer), the latest evolution of Bioseb's Electronic Von Frey instrument for determining the mechanical sensitivity threshold in rodents (rats and mice) is a must-have instrument for your reseach on hyperalgesia and allodynia. By measuring and recording the force at which the animal exhibits a paw withdrawal reflex, pathologies related to sensory response and hyper- or hypo-aesthesia can be studied.

The EVF5 includes an embedded camera inside the stimulator handle and a new, dedicated software revolutionizing the experimental process.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1860-electronic-von-frey-5-with-embedded-camera.html ) ) ) 1
Read more

Filters

Applications

Dates

<< 1 2 >>