Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to...
Array
(
[id_prestablog_news] => 232
[id_shop] => 1
[date] => 2009-09-01 00:00:00
[date_modification] => 2024-02-09 14:15:11
[langues] => ["1","2"]
[actif] => 1
[slide] => 0
[url_redirect] =>
[average_rating] =>
[number_rating] =>
[author_id] => 1
[featured] => 0
[prim_key] => 461
[id_lang] => 1
[title] => Electrical stimulation combined with exercise increase axonal regeneration after
[paragraph] => Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury.
[content] => Authors
E. Asensio-Pinilla, E. Udina, J. Jaramillo, X. Navarro.
Lab
Universitat Autònoma de Barcelona, Institute of Neurosciences and Department of Cell Biology, Group of Neuroplasticity and Regeneration, Bellaterra, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
Journal
Experimental Neurology
Abstract
Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. Two groups received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h, immediately after injury (ESa) or during 4 weeks (1 h daily; ESc). A third group (ES+TR) received 1 h electrical stimulation and was submitted to treadmill running during 4 weeks (5 m/min, 2 h daily). A fourth group performed only exercise (TR), whereas an untreated group served as control (C). Nerve conduction, H reflex and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. Histological analysis was made at the end of the follow-up. Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.
BIOSEB Instruments Used
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)
[meta_description] =>
[meta_keywords] => http://www.sciencedirect.com/science/article/pii/S0014488609002222
[meta_title] =>
[link_rewrite] => electrical-stimulation-combined-with-exercise-increase-axonal-regeneration-after-peripheral-nerve-injury-
[actif_langue] => 1
[read] => 1191
[count_comments] => 0
[id] => 232
[categories] => Array
(
[11] => Array
(
[id_prestablog_categorie] => 11
[title] => Central Nervous System (CNS)
[link_rewrite] => Central-Nervous-System-(CNS)
)
[38] => Array
(
[id_prestablog_categorie] => 38
[title] => Nerve regeneration
[link_rewrite] => Nerve-regeneration
)
[2] => Array
(
[id_prestablog_categorie] => 2
[title] => Publications
[link_rewrite] => publications
)
)
[authors] =>
[paragraph_crop] => Electrical stimulation combined with exercise increase axonal regeneration after peripheral [...]
[link_for_unique] => 1
[products_liaison] => Array
(
[1859] => Array
(
[name] => Electronic Von Frey - Wireless
[description_short] => A quick solution to determine the mechanical sensitivity threshold in rodents (mice and rats). Now wireless, to be free from annoying cables!
This precise and easy-to-use electronic instrument is a must-have reference for your research in analgesia, nociception, neuro-pathologies and post-operative pain.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1859-electronic-von-frey-4.html
)
[1860] => Array
(
[name] => Electronic Von Frey 5 with embedded camera
[description_short] => As an electronic version of the classical Von Frey Filaments esthesiometer (or aesthesiometer), the latest evolution of Bioseb's Electronic Von Frey instrument for determining the mechanical sensitivity threshold in rodents (rats and mice) is a must-have instrument for your reseach on hyperalgesia and allodynia. By measuring and recording the force at which the animal exhibits a paw withdrawal reflex, pathologies related to sensory response and hyper- or hypo-aesthesia can be studied.
The EVF5 includes an embedded camera inside the stimulator handle and a new, dedicated software revolutionizing the experimental process.


[thumb] =>
[img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg
[image_presente] => 1
[link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1860-electronic-von-frey-5-with-embedded-camera.html
)
)
)
1 Read more