Publications

Latest publication 12/04/2014

Tubulization with chitosan guides for the repair of long gap peripheral nerve in

Biosynthetic guides can be an alternative to nerve grafts for reconstructing severely injured peripheral nerves. The aim of this study was to...

Array
(
    [id_prestablog_news] => 674
    [id_shop] => 1
    [date] => 2014-12-04 00:00:00
    [date_modification] => 2024-02-09 14:15:11
    [langues] => ["1","2"]
    [actif] => 1
    [slide] => 0
    [url_redirect] => 
    [average_rating] => 
    [number_rating] => 
    [author_id] => 1
    [featured] => 0
    [ishero] => 0
    [prim_key] => 1317
    [id_lang] => 1
    [title] => Tubulization with chitosan guides for the repair of long gap peripheral nerve in
    [paragraph] => Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat
    [content] => 

Authors
Gonzalez-Perez F, Cobianchi S, Geuna S, Barwig C, Freier T, Udina E, Navarro X.


Lab
Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona and CIBERNED, Bellaterra, Spain.

Journal
Microsurgery

Abstract
Biosynthetic guides can be an alternative to nerve grafts for reconstructing severely injured peripheral nerves. The aim of this study was to evaluate the regenerative capability of chitosan tubes to bridge critical nerve gaps (15 mm long) in the rat sciatic nerve compared with silicone (SIL) tubes and nerve autografts (AGs). A total of 28 Wistar Hannover rats were randomly distributed into four groups (n = 7 each), in which the nerve was repaired by SIL tube, chitosan guides of low (?2%, DAI) and medium (?5%, DAII) degree of acetylation, and AG. Electrophysiological and algesimetry tests were performed serially along 4 months follow-up, and histomorphometric analysis was performed at the end of the study. Both groups with chitosan tubes showed similar degree of functional recovery, and similar number of myelinated nerve fibers at mid tube after 4 months of implantation. The results with chitosan tubes were significantly better compared to SIL tubes (P < 0.01), but lower than with AG (P < 0.01). In contrast to AG, in which all the rats had effective regeneration and target reinnervation, chitosan tubes from DAI and DAII achieved 43 and 57% success, respectively, whereas regeneration failed in all the animals repaired with SIL tubes. This study suggests that chitosan guides are promising conduits to construct artificial nerve grafts. © 2014 Wiley Periodicals, Inc. Microsurgery, 2014.

BIOSEB Instruments Used
Electronic Von Frey 4 (BIO-EVF4),Electronic Von Frey 5 with embedded camera (BIO-EVF5)

Keywords/Topics
Nerve regeneration; Central Nervous System (CNS) [meta_description] => [meta_keywords] => http://www.ncbi.nlm.nih.gov/pubmed/25471200 [meta_title] => [link_rewrite] => tubulization-with-chitosan-guides-for-the-repair-of-long-gap-peripheral-nerve-injury-in-the-rat [actif_langue] => 1 [read] => 1191 [count_comments] => 0 [id] => 674 [categories] => Array ( [11] => Array ( [id_prestablog_categorie] => 11 [title] => Central Nervous System (CNS) [link_rewrite] => Central-Nervous-System-(CNS) ) [38] => Array ( [id_prestablog_categorie] => 38 [title] => Nerve regeneration [link_rewrite] => Nerve-regeneration ) [2] => Array ( [id_prestablog_categorie] => 2 [title] => Publications [link_rewrite] => publications ) ) [authors] => [paragraph_crop] => Tubulization with chitosan guides for the repair of long gap peripheral nerve injury in the rat [link_for_unique] => 1 [products_liaison] => Array ( [1859] => Array ( [name] => Electronic Von Frey - Wireless [description_short] =>

A quick solution to determine the mechanical sensitivity threshold in rodents (mice and rats). Now wireless, to be free from annoying cables!

This precise and easy-to-use electronic instrument is a must-have reference for your research in analgesia, nociception, neuro-pathologies and post-operative pain.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1859-electronic-von-frey-4.html ) [1860] => Array ( [name] => Electronic Von Frey 5 with embedded camera [description_short] =>

As an electronic version of the classical Von Frey Filaments esthesiometer (or aesthesiometer), the latest evolution of Bioseb's Electronic Von Frey instrument for determining the mechanical sensitivity threshold in rodents (rats and mice) is a must-have instrument for your reseach on hyperalgesia and allodynia. By measuring and recording the force at which the animal exhibits a paw withdrawal reflex, pathologies related to sensory response and hyper- or hypo-aesthesia can be studied.

The EVF5 includes an embedded camera inside the stimulator handle and a new, dedicated software revolutionizing the experimental process.

Instrument for ratsInstrument for mice

[thumb] => [img_empty] => /var/www/vhosts/de3310.ispfr.net/bioseb2024/modules/prestablog/views/img/product_link_white.jpg [image_presente] => 1 [link] => https://bioseb.com/en/pain-mechanical-allodynia-hyperalgesia/1860-electronic-von-frey-5-with-embedded-camera.html ) ) ) 1
Read more

Filters

Applications

Dates

<< 1 ... 94 95 96 97 98 >>